Leslie Buck

Full Professor
Associate Chair, Graduate Studies
Cell & Systems Biology
Research Areas: 
Animal Physiology, Neurobiology, Proteomics
Graduate Programs: 
Ecology & Evolutionary Biology
Office phone: 
Lab phone: 
RW 329

les [dot] buck (at)utoronto [dot] ca


Department of Cell & Systems Biology
University of Toronto
25 Harbord Street, RW 329
Toronto, Ontario
Canada M5S 3G5


Our primary interest is understanding what makes some animal species tolerant to severe hypoxia and others intolerant. Of particular interest are the underlying cellular mechanisms that effectively reduce cellular energetic demands (in terms of ATP utilization) with the onset of hypoxia. Key to surviving long term severe hypoxia is the ability to reduce cellular ATP utilization. One major site of ATP utilization for all cells is the maintenance of cellular ion gradients, the loss of gradients being one hallmark of hypoxic cell injury. Using a brain sheet and hepatocyte preparation from the western painted turtle, the most hypoxia tolerant vertebrate known, we are studying the second messenger pathways regulating hypoxic suppression of brain glutamate receptor and liver Na+ /K+ ATPase, both of which we have previously demonstrated to be actively down-regulated in hypoxia. We are also interested in the suite of proteins expressed in hypoxically preconditioned mammalian tissues. One of these (HSP 70) we have detected at the mRNA level in hypoxically stressed turtle hepatocytes. We are currently investigating the role of adenosine in the hypoxic expression of HSP 70. A better understanding of these mechanisms may lead to improved clinical interventions where hypoxia is life threatening.

Rodgers-Garlick, C. I, Hogg, D.W., Buck, L.T. (2013).  Oxygen-Sensitive Reduction in Ca2+-activated K+ channel open probability in turtle cerebrocortex. Neuroscience. 237, 243-254.
Buck, L.T., Warren, D., many,, others, (2013).  The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biology. 14(R28), doi:10.1186/gb-2013-14-3-r28.
Hawrysh, P., Buck, L. (2013).  Anoxia-mediated calcium release through the mitochondrial permeability transition pore silences NMDA receptor currents in turtle neurons. Journal of Experimental Biology. 216, 4375-4387.
Pamenter, M.E., Hogg, D.W., Gu, X.Q., Buck, L.T., Haddad, G.G. (2012).  Anoxia-tolerant Western Painted turtle cortex is resistant to an in vitro mimic of the ischemic mammalian penumbra. J. Cereb. Blood Flow and Metab. 32(11), 2033-43.
Buck, L.T., Hogg, D.W.R., Rodgers-Garlick, C. I, Pamenter, M.E. (2012).  Oxygen sensitive synaptic neurotransmission in anoxia-tolerant turtle cerebrocortex. Arterial Chemoreception. Advances in Experimental Medicine and Biology. 758, 71 - 79.
Pamenter, M.E., Ormond, J., Hogg, D.W., Woodin, M., Buck, L.T. (2011).  Endogenous GABAA and GABAB receptor-mediated electrical suppression is critical to neuronal anoxia tolerance. Proceedings of the National Academy of Sciences, USA. 108(27), 11274-11279.
Zivkovic, G., Buck, L.T. (2010).  Mitochondrial ATP sensitive K+ channels decrease AMPAR currents in the anoxic turtle cortex. Journal of Neurophysiology. 104, 1913-1922.
Malik, A., Buck, L.T. (2010).  Adenosine-mediated neuronal depression in the pond snail Lymnaea stagnalis. Journal of Experimental Biology. 213, 1126-1132.
Zhang, Z., Smit, G., N.,, Syed,, van S, V.R.K., Fainzilber, M., Goldberg, J.I., Spencer, G., Yeoman, M., Wildering, W., Coorssen, J.R., Croll, R., Buck, L.T., Feng, Z-P. (2009).  Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis. BMC Genomics. 23(10), 451.
Pamenter, M.E., Buck, L.T. (2008).  Neuronal membrane potential is mildly depolarized in the anoxic turtle cortex. Comp Biochem. Physiol. A. 150, 410-414.
Pamenter, M.E., Buck, L.T. (2008).  Endogenous reductions in N-methyl-D-aspartate receptor activity inhibit nitric oxide production in the anoxic freshwater turtle cortex. FEBS Lett. 582, 1738-1742.
Pamenter, M.E., Shin, D.S-H., Buck, L.T. (2008).  AMPA receptors undergo channel arrest in the anoxic turtle cortex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294(2), R606-613.
Pamenter, M.E., S-H., S.D., Cooray, M., L.T., B. (2008).  Mitochondrial KATP channels mediate anoxia-induced decreases in NMDAR activity in the turtle cortex. J. Physiol. 586(4), 1043-1058.
Pamenter, M.E., Buck, L.T. (2008).  Delta-opiod receptor antagonism potentiates N-methyl-D-aspartate receptor currents and induces extended neuronal depolarization in anoxic turtle cortex. J. Exp. Biol. 211, 3512-3527.
Pamenter, M.E., Richards, M., Buck, L.T. (2007).  Anoxia-induced changes in second messengers and reactive oxygen species in the painted turtle. J. Comp. Physiol. B. 177(4), 473-481.
Bickler, P.E., Buck, L.T. (2007).  Hypoxia tolerance in reptiles, amphibians and fishes: life with variable oxygen availability. Annu. Rev. Physiol. 69, 5.1-5.26.
Walsh, P., Veauvey, C., Pamenter, M., Buck, L., Wilkie, M. (2007).  Piscine insights into comparisons of anoxia tolerance, ammonia toxicity, stroke and hepatic encephalopathy. Comp. Biochem. Phys. A. 147, 332-343.
Cheung, U., Mogashi, M., Smith, J., Buck, L., Woodin, M. (2006).  Excitatory actions of GABA mediate severe-hypoxia induced depression of neuronal activity in the pond snail (Lymnaea stagnalis). J. Exp. Biol. 209, 4429-4435.
Buck, L., Pamenter, M. (2006).  Adaptive responses of vertebrate neurons to hypoxia, Matching supply to demand. Resp. Physiol. Neurobiol. 154, 226-240.
Shin, D., Wilkie, M., Pamenter, M., Buck, L. (2005).  Calcium and protein phosphatase 1/2A attenuate N-methyl-D-aspartate receptor activity in the anoxic turtle cortex. Comp. Biochem. Physiol. (A) 142, 50-57.
Ramaglia, V., Harapa, G., White, N., Buck, L. (2004).  Bacterial Infection Induces Heat Shock Protein Expression in the Western Painted Turtle.. Comp. Biochem. Physiol. Part C.. 138(2), 139-148.
Ramaglia, V., Buck, L. (2004).  Tissue specific expression of inducible and constitutive Hsp70 isoforms and Hsp90 in the western painted turtle.. J. Exp. Biol.. 207(21), 3775-3784.
Buck, L. (2004).  Adenosine as a Signal for Ion Channel Arrest in Anoxia-Tolerant Organisms.. Comp. Biochem. Physiol. B.. 139(3), 401-414.
Shin, D., Ghai, H., Cain, S., Buck, L. (2003).  Gap junctions do not underlie changes in whole-cell conductance in the anoxic turtle brain.. Comp. Biochem. Physiol.. Part A, 13, 181-194.
Shin, D., Buck, L. (2003).  Effect of anoxia and pharmacological anoxia on whole-cell NMDA receptor currents in cortical neurons from the western painted turtle.. Physiol. Biochem. Zool.. 76(2), 532-543.
Scott, M., Locke, M., Buck, L. (2003).  Tissue-specific expression of inducible and constitutive Hsp70 isoforms in the western painted turtle.. J. Exp. Biol.. 206, 303-311.
Buck, L., Shin, D. (2003).  Role of adenosine in the natural anoxia-tolerance of the freshwater turtle.. Trends in Comparative Biochemistry and Physiology Vol.. 9, 93-116.
Bickler, P., Buck, L. (2002).  Molecular adaptations for survival during anoxia: lessons from lower vertebrates.. The Neuroscientist. 8(3), 234-242.
Buck, L. (2000).  Importance of succinate as an anaerobic endproduct in the diving turtle (Chrysemys picta bellii).. Comp. Biochem. Physiol. Part B. 126, 409-413.
Bickler, P., Donohoe, P., Buck, L. (2000).  Hypoxia-induced silencing of N-methyl-D aspartate receptors in turtle neurons.. J. Neuroscience. 20(10), 3522-3528.
Hochachka, P., Buck, L., Doll, C., Land, S. (1996).  Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack.. Proceed. Nat. Acad. Sci. USA. 1996 Sept., 9493-9498.